
LINE-HEIGHTINTODEEP DIVE

Why should
you care about

line-height?

Because line-height is an
integral part of CSS-based

layouts.

It can help to make our content
easier to read and

comprehend.

It can be used to control the
vertical rhythm of multiple

column layouts.

It can be used to centre inline
content vertically.

But also because it is one of the
fundamentals of CSS, like font-
sizing, the cascade, inheritance

and selectors.

But before we begin, let's go
back in time and look at the term

“leading”.

What is  
leading?

Back in the “good old days” type
was set by hand using printing

presses.

Printed material was created by
setting out letters in rows. Each

letter was created on an 
individual block.

Leading, or lead strips were
added between the lines of
letters when additional vertical

space was required.

The term “leading” is still used
today in print typography,
where it refers to the distance

between the baselines of
successive lines of type.

In CSS, the line-height property
is used to control the vertical

space between lines.

However, as we will soon see,
“leading” is still used in

association with CSS line-height.

Syntax

The CSS line-height syntax
looks like this:

https://www.w3.org/TR/CSS2/visudet.html#line-height

https://www.w3.org/TR/CSS2/visudet.html#line-height

<'line-height'> = normal | <number> | <length> |
<percentage> | inherit

This means that line-height can
be specified using one of the

following methods:

Option 1: Line-height can be
specified as “normal” which is

the initial value. By default,
browsers use between 1.0 - 1.2

line-height.

body { line-height: normal; }

Option 2: Line-height can be
specified as “inherit” which will
inherit the line-height from the

parent.

body { line-height: inherit; }

Option 3: Line-height can be
specified using a percentage

value.

body { line-height: 120%; }

Option 4: Line-height can be
specified using a length value.

body { line-height: 20px; }

A wide range of different
types of length values can be

used such as:

/* FONT RELATATIVE LENGTHS */

/* font size of the element */
body { line-height: 1em; }
/* x-height of the element’s font */
body { line-height: 1ex; }
/* width of the "0" in the element’s font */
body { line-height: 1ch; }
/* font size of the root element */
body { line-height: 1rem; }

/* VIEWPORT PERCENTAGE LENGTHS */

/* 1% of viewport’s width */
body { line-height: 1vw; }
/* 1% of viewport’s height */
body { line-height: 1vh; }
/* 1% of viewport’s smaller dimension */
body { line-height: 1vmin; }
/* 1% of viewport’s larger dimension */
body { line-height: 1vmax; }

/* ABSOLUTE LENGTHS */

/* pixels */
body { line-height: 1px; }
/* millimeters */
body { line-height: 1mm; }
/* quarter-millimeters */
body { line-height: 1q; }
/* centimeters */
body { line-height: 1cm; }

/* inches */
body { line-height: 1in; }
/* points */
body { line-height: 1pt; }
/* picas */
body { line-height: 1pc; }

Option 5: Line-height can be
specified using a number value

(a unit-less value).

body { line-height: 1; }

Number values can be specified
in a range of different ways, as

long as they are positive
values.

/* Valid number values for line-height */
body { line-height: 3; }
body { line-height: 3.01; }
body { line-height: .30; }
body { line-height: .3; }
body { line-height: 0; }
body { line-height: 0.0; }
body { line-height: -0.0; }
body { line-height: +0.0; }

Shorthand

These five line-height values can
also be specified using the  
font shorthand property.

The line-height value is written in
conjunction with the font-size
value - separated by a slash: 
<font-size>/<line-height>

https://www.w3.org/TR/CSS2/fonts.html#font-shorthand

https://www.w3.org/TR/CSS2/fonts.html#font-shorthand

<'font'> = [[<'font-style'> || <'font-variant'>
|| <'font-weight'>]? <'font-size'> [/ <'line-
height'>]? <'font-family'>] | caption | icon |
menu | message-box | small-caption | status-bar |
inherit

body {
 font: 1em/normal arial, helvetica, sans-serif;
}

body {
 font: 1em/inherit arial, helvetica, sans-serif;
}

body {
 font: 1em/20px arial, helvetica, sans-serif;
}

body {
 font: 1em/120% arial, helvetica, sans-serif;
}

body {
 font: 1em/1.2 arial, helvetica, sans-serif;
}

Inheritance

Some CSS properties are
inherited - which means that

their values are passed down to  
descendant elements.

For the line-height property,
inheritance is a little more

complicated than many other
properties.

To see how line-height
inheritance works, we will use
four examples where the line-

height is set on the body only.

Percentage line-height

In the following example, the
line-height for the body element

has been set with a
percentage value (120%).

body {
 font-size: 16px;
 line-height: 120%;
}

h1 { font-size: 32px; }
p { font-size: 16px; }
footer { font-size: 12px; }

The percentage value and the
body element’s font size are

used to create a calculated
value (16px x 120% = 19.2px).

This calculated value is
inherited by descendant

elements.

body 16px 120% 16 x 120% = 19.2px
h1 32px inherits calculated value 19.2px
p 16px inherits calculated value 19.2px

footer 12px inherits calculated value 19.2px

This results in a line-height which
is acceptable for paragraph
content, but too tight for

headings and too open for the
footer text.

Length line-height

In the following example, the
line-height for the body element

has been set with a length
value (20px).

body {
 font-size: 16px;
 line-height: 20px;
}

h1 { font-size: 32px; }
p { font-size: 16px; }
footer { font-size: 12px; }

The length value (20px) is
inherited directly by descendant

elements.

body 16px 20px 20px
h1 32px inherits 20px 20px
p 16px inherits 20px 20px

footer 12px inherits 20px 20px

Again, this results in a line-height
which is acceptable for

paragraph content, but too tight
for headings and too open for

the footer text.

Normal line-height

In the following example, the
line-height for the body element

has been set with the
“normal” value.

body {
 font-size: 16px;
 line-height: normal;
}

h1 { font-size: 32px; }
p { font-size: 16px; }
footer { font-size: 12px; }

In this case, the normal value
rather than a calculated value is

inherited by descendant
elements. Browsers may

interpret the actual normal value
in slightly different ways.

body 16px normal 16 x 1.2 (approx.) = 19.2px (approx.)
h1 32px normal 32 x 1.2 (approx.) = 38.4px (approx.)
p 16px normal 16 x 1.2 (approx.) = 19.2px (approx.)

footer 12px normal 12 x 1.2 (approx.) = 14.4px (approx.)

This method scales the line-
height to suit each element. This
results in a line-height which is
acceptable for the paragraph,

heading and footer content.

Number line-height

In the following example, the
line-height for the body element
has been set with a number

value (1.2).

body {
 font-size: 16px;
 line-height: 1.2;
}

h1 { font-size: 32px; }
p { font-size: 16px; }
footer { font-size: 12px; }

In this case, the factor (1.2)
rather than a calculated value is

inherited by descendant
elements.

body 16px 1.2 16 x 1.2 = 19.2px
h1 32px factor of 1.2 32 x 1.2 = 38.4px
p 16px factor of 1.2 16 x 1.2 = 19.2px

footer 12px factor of 1.2 12 x 1.2 = 14.4px

Like the normal value, this
method scales to suit each

element and results in a line-
height which is acceptable for

the paragraph, heading and
footer content.

Which method is best?

Number values are the
preferred method as they work

well when inherited.

Unlike the “normal” keyword,
number values allows us to set

specific line-heights for
different types of elements.

Inline boxes and
line-height

Types of boxes

In order to understand  
line-height more fully, we need to

look at various types of CSS
boxes.

If we look at a simple
paragraph of text, there are a
range of possible boxes that are

relevant.

The paragraph is referred to as a
containing box in this case - as

it contains other boxes.

The paragraph can also be
referred to as a block box as it

displays as a block - with
whitespace before and after.

containing box
or block box

Inside the paragraph, there may
be any number of inline boxes.

These are boxes that do not
form new lines like block boxes.

In our example, the italic
element is an inline box.

inline box

Other inline boxes without
specific markup are referred to
as anonymous inline boxes.

anonymous boxes

Inline boxes sit side-by-side
within the containing box,

forming line boxes.

line boxes

We’ll be looking at line boxes in
more detail later.

The content area is the invisible
box that surrounds the text. Its

height is determined by the font-
size.

ÙAbcdefghijkl
content area

inline box

How line-height affects
inline boxes

Line height is applied to inline
boxes using a simple formula:

Step 1.
Find the difference between the

font-size and line-height. This will
determine the leading.

line-height - font-size = leading
20px - 16px = 4px

Step 2.
Divide the leading in half to

create a “half-leading” value.

leading / 2 = half-leading
4px / 2 = 2px (half-leading)

Step 3.
Apply this half-leading value to

the top and bottom of the
content area.

Top half-leading: 2px
Content area: 16px  

Bottom half-leading: 2px
Total height: 20px

ÙAbcdefghijkl

inline box = 20px high

top half-leading = 2px high

bottom half-leading = 2px high

content area = 16px high

However, if the line-height is
smaller than the font size, the

inline box will be the height of
the line height only.

This means the content area will
poke out the top and bottom

of the inline box.

line-height - font-size = leading
12px - 16px = -4px (leading)
-4px / 2 = -2px (half-leading)

Top half-leading: -2px
Content area: 16px  

Bottom half-leading: -2px
Total height: 12px

ÙAbcdefghijkl

inline box = 12px high

top half-leading = -2px high

bottom half-leading = -2px high

content area = 16px high

Finally, you can also set the
line-height to “0” which means

the inline element will have no
height at all.

line-height - font-size = leading
0 - 16px = -16px (leading)

-16px / 2 = -8px (half-leading)

Top half-leading: -8px
Content area: 16px  

Bottom half-leading: -8px
Total height: 0

ÙAbcdefghijkl
inline box = 0px high

content area = 16px high

Using line-height to
vertically align content

Line-height can be used to
vertically align content inside a

parent container as long as the
content is one line only.

For example: 
Let’s take a small piece of text

with font-size 16px and we want
it to to be vertically aligned inside

a parent that is 200px high.

We can set the line-height to
200px and this text will

automatically sit in the vertical
centre of the parent.

line-height - font-size = leading
200px - 16px = 184px (leading)
184px / 2 = 92px (half-leading)

Top half-leading: 92px
Content area: 16px  

Bottom half-leading: 92px
Total height: 200px

ÙAbcdefghijkl

inline box = 200px

top half-leading = 92px

bottom half-leading = 92px

content area = 16px

Line boxes

How inline boxes affect
line boxes

The height of line boxes is
determined by the tallest inline
box (or replaced element) inside

the line.

The tallest inline box could be an
anonymous inline box.

Some text in a line

line box
anonymous inline box

top half-leading

bottom half-leading

It could be an inline box with
increased line-height (which
makes this inline box taller than

other inline boxes).

Some text

line box

X here
inline box with

increased line-height

It could be an inline box with a
larger font-size (which makes
this inline box taller than other

inline boxes).

Some text

line box

X here
inline box with

increased font-size

Depending on the browser, it
could be the presence of a
superscript or subscript.

(Some browsers render
superscript elements in a way

that affects line boxes)

Some text

line box

2 here
superscript inline box

Side note:
We can solve this by setting the
sup and sub elements with line-

height set to “0”.

sub,
sup {
 line-height: 0;
}

Or even the presence of a
replaced element that is larger
than the text around it, such as

an image.

Some text

line box

here
replaced element

anonymous inline box

Inline boxes poking out
of line boxes?

Line boxes are laid out one
after the other, spreading to

the width of the containing box.

Some text that spreads over about

three different lines in a small set of

line boxes

As we have seen, line boxes will
grow to the height of inline

boxes inside.

three different lines in a small set of

Some text that spreads over about

line boxes inline box with
increased font-size

However, there are times when
aspects of inline boxes will

poke out of the top and/or
bottom of line boxes.

An example is an inline box with
padding, margin or border.

Because inline boxes cannot
be given height, padding,
margin and border can be

present above and below the
element, but they do not affect

the line box.

Some text here

inline box padding
pokes out of line box

Browsers will render the line
boxes in document order. So,
borders on subsequent lines

may paint over the borders
and text of previous lines.

Some text that spreads over about

three different lines in a small set of

line boxes in a paragraph.

paints over previous line

paints over previous line

Ideal  
line-height?

The concept of “ideal line-
height” depends on a wide
range of factors including the

element, the type of content, and
the column width.

For this reason, I’m only going to
touch on suggested line-hight for

a small set of elements, in
specific circumstances.

Research has shown that line-
height that is too small can

make content harder to read
as users have to work harder to

move from line to line.

Similarly, line-height that is too
large can force users eyes

have to travel further to read
content, which can become

tiring.

The WCAG 2.0 guidelines state
that: “line spacing is at least

space-and-a-half within
paragraphs”.

https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-
contrast-visual-presentation.html

https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-visual-presentation.html

This means that general content
such as paragraphs should be

set to a line-height of 1.5.

p { line-height: 1.5; }

The same rules should apply to
ordered and unordered lists

which have a lot of content
inside each list item.

li { line-height: 1.5; }

However, content-heavy list
items could then bleed into each
other, so you might want to add

additional space after list
items.

li {
line-height: 1.5;
margin-botton: .5em;

}

On the other hand, headings
often look strange when there
is too much line-height, so I
generally set headings to 1.1 or

1.2 - much tighter than
paragraphs.

h1,h2,h3,h4,h5,h6 {
line-height: 1.1;

}

Responsive line-
height?

Several years ago, I was involved
in user testing a content-heavy
website where we wanted the

content to be “as readable as
possible” at all screen sizes.

We tested a range of different
factors including font-family,

font-size, color and line-height.

As well as testing specific tasks,
and recording times for these
tasks, we also asked users

directly about these factors
after each test was concluded.

It turned out that users were
reasonably comfortable with

paragraphs and lists that were
anywhere from 1.4 - 1.6 at

large and mid screen sizes.

However, users were more
comfortable with slightly less

line-height (between 1.3 - 1.5)
at small screen size, as the

lines were much shorter.

As long as line-height is set
using number values, it is very

easy to tweak line-heights for
the different screen sizes.

p,li { line-height: 1.4; }

@media(min-width: 320px) {
p,li { line-height: 1.5; }

}

Baseline grids

“Vertical rhythm” in multiple
column layouts is where you to
establish a baseline grid that
aligns across multiple columns

No numquam interpretaris duo. Ei pri nullam
sanctus, sea ornatus probatus pertinax an.
Saepe persius delectus cum eu, ea vim
numquam electram aliquando. Et eos erat
dolorem abhorreant, quem stet vidit te per.
Inermis nonumes mei no, et has ornatus
antiopam cotidieque.

Subheading

Ut sit paulo consulatu, mea nonumy appareat
conceptam et. Dicat consulatu hendrerit duo at,
ei sea tation antiopam accommodare. Eam ad
perfecto imperdiet, novum solet eu mei. Eu eam
aliquam consulatu instructior, vel vocibus
oportere intellegebat ex.

Heading Level 1

Lorem ipsum dolor sit amet, has id discere
platonem ocurreret, ut duo audire senserit
maiestatis, per ex assum instructior. Quo assum
facete deleniti ne. Ei pri nisl voluptatum.

Amet laboramus sententiae te usu. Et cum quis
amet veniam, mel case omittam id, ei vis atqui.

Te munere audire sit, cu sea vidisse probatus,
munere molestie voluptatibus id ius. Paulo
intellegebat has id. Nam no graecis fastidii
perfecto, nec ut atomorum salutatus. Usu at
rebum zril principes, hinc esse id cum. Nam
ridens ullamcorper et.

Using Desktop Publishing
software, this can easily be

achieved by simply checking a
“snap to baseline grids”

button.

However, it’s much harder
using CSS. Here are some
steps to achieve a simple

baseline grid.

Step 1.
Set a line-height which will
become the baseline grid.

16px / 24px

$baseline: 24px;

Step 2.  
Set headings, paragraphs and

lists with this line-height.

$baseline: 24px;

h1 {
 line-height: $basefont*2;
}

p {
 line-height: $baseline;
}

Step 3.  
Turn off margin-top on all of
these elements, and set the

margin-bottom to match the line-
height. This will set consistent
one full line gaps after each

element.

No numquam interpretaris duo. Ei pri nullam
sanctus, sea ornatus probatus pertinax an.
Saepe persius delectus cum eu, ea vim
numquam electram aliquando. Et eos erat
dolorem abhorreant, quem stet vidit te per.
Inermis nonumes mei no, et has ornatus
antiopam cotidieque.

Subheading

Ut sit paulo consulatu, mea nonumy appareat
conceptam et. Dicat consulatu hendrerit duo at,
ei sea tation antiopam accommodare. Eam ad
perfecto imperdiet, novum solet eu mei. Eu eam
aliquam consulatu instructior, vel vocibus
oportere intellegebat ex.

Heading Level 1

Lorem ipsum dolor sit amet, has id discere
platonem ocurreret, ut duo audire senserit
maiestatis, per ex assum instructior. Quo assum
facete deleniti ne. Ei pri nisl voluptatum.

Amet laboramus sententiae te usu. Et cum quis
amet veniam, mel case omittam id, ei vis atqui.

Te munere audire sit, cu sea vidisse probatus,
munere molestie voluptatibus id ius. Paulo
intellegebat has id. Nam no graecis fastidii
perfecto, nec ut atomorum salutatus. Usu at
rebum zril principes, hinc esse id cum. Nam
ridens ullamcorper et.

$baseline: 24px;

h1 {
 line-height: $basefont*2;
 margin-bottom: $baseline;
}
p {
 line-height: $baseline;
 margin-bottom: $baseline;
}

Step 4.  
You may need to set font-sizes

to the same ratios.

$basefont: 16px;
$baseline: 24px;

h1 {
 line-height: $basefont*2;
 margin-bottom: $baseline;
}
p {
 font-size: $basefont;
 line-height: $baseline;
 margin-bottom: $baseline;
}

However, nothing is ever that
simple. As soon as you

introduce pull-quotes, different
headings, special content and

images, things can quickly break
down.

https://www.smashingmagazine.com/2012/12/css-baseline-the-good-
the-bad-and-the-ugly/

http://webdesign.tutsplus.com/articles/setting-web-type-to-a-baseline-
grid--webdesign-3414

http://alistapart.com/article/settingtypeontheweb

http://stephanecurzi.me/baselinecss.2009/grid.html

Conclusion

Line-height is everywhere in
our layouts. It’s in our headings,

in our nav items, our form
controls, our buttons.

Understanding how line-height
works will make your job a lot

easier.

We’re done.

Russ Weakley
Max Design

Site: maxdesign.com.au

Twitter: twitter.com/russmaxdesign

Slideshare: slideshare.net/maxdesign

Linkedin: linkedin.com/in/russweakley

